Opening the Black Box of Interaction in Visualization

Hans-Jörg Schulz¹, Tatiana v. Landesberger², Dominikus Baur³

VIS Tutorial 2014

- 1. Fraunhofer IGD, Rostock, Germany
- 2. TU Darmstadt, Darmstadt, Germany
- 3. Dominikus Baur Interfacery

PART II: INTERACTION ARCHITECTURE

Speaker: Hans-Jörg Schulz

Interaction Architecture

Interaction Architecture

What happens between the computer receives an input and sends off an output?

- Designer's Perspective

 Interaction Models (UML, UAN,...)
- 2. User's Perspective
 - History and Interruption Management
- Software Engineer's Perspective

 Patterns for Interactive Software (MVC, DCI,...)

Designer's Perspective

INTERACTION MODELS

Select Menu ltem

> Abandon Choosing

Menu

Item

liem Мепи Choosing Abandon

5

Select Another Menu Title

Interaction Models

Why do we need to model interaction?

- to capture requirements (when the user does this, then the system should do that)
 - to develop by
 - to evaluate against
- to build workflows for passing on interaction knowledge and providing user guidance
- to automatically generate UIs

Types of Interaction Models

What is modeled?

- Extent: Single Action or whole Workflow
- Granularity: Concrete Events or General Task

Types of Interaction Models

What is modeled?

- Extent: Single Action or whole Workflow
- Granularity: Concrete Events or General Task

How is it modeled?

- Diagrammatically: Sequence/Activity Diagram
- Symbolically: Notations

Diagrammatic Models (UML)

Activity Diagrams

- State/Transition Diagram
- Models the logical flow (of interaction)
- Focus on which activities can be performed in which order and under which constraints [...]
- Overview character
 -> shows the whole flow

Diagrammatic Models (UML)

Sequence Diagrams

- Lifeline Diagram
- Models interaction between components as event sequences
- Each sequence can be ۲ seen as a path through the activity diagram
- Detail character -> shows one flow

Diagrammatic Models (UML)

Interaction Overview Diagrams

- Nested/Compounded Diagram
- Combines Activity and Sequence Diagrams by embedding interaction for each activity
- Compartmentalization of Sequence Diagram
- Overview & Detail character combined -> somewhat crowded

mage taken from Garcia et

al. 2003

Notations (Task Design Space)

Design Dimensions

• WHY?

GOAL

- HOW?
- WHAT?
- WHERE?

adapted from Schulz et al. 2013

- Exploratory Analysis hypothesis generation through undirected search
- Confirmatory Analysis hypothesis testing through directed search
- Presentation
 communication of confirmed analysis results

Notations (Task Design Space)

Design Dimensions

MEANS

- WHY? GOAL
- HOW?
- WHAT?
- WHERE?

adapted from Schulz et al. 2013

- Navigation changes the scope or granularity of the data
- (Re-)organization adjusts the data by reducing or enriching it
- Relation *puts data in context by seeking similarities or differences*

Notations (Task Design Space)

Design Dimensions

- WHY? GOAL
- HOW? MEANS
- WHAT? CHARACTERISTICS
- WHERE?

- Low-level Characteristics

 observations about data
 objects and data values
 visual literacy
- High-level Characteristics complex patterns in the data
 - → visual analysis

adapted from Schulz et al. 2013

Notations (Task Design Space)

Design Dimensions

- WHY? GOAL
- HOW? MEANS
- WHAT? CHARACTERISTICS
- WHERE? TARGET

- Attribute Relations
 linking data objects to their attribute values in particular:
 - Temporal Relations
 - Spatial Relations
- Structural Relations linking data objects with each other

adapted from Schulz et al. 2013

Notations (Task Design Space)

Design Dimensions

- WHY? GOAL
- HOW? MEANS
- WHAT? CHARACTERISTICS
- WHERE? TARGET

CARDINALITY

adapted from Schulz et al. 2013

- Single Instance *for highlighting details*
- Multiple Instances for showing data in context
- All Instances for getting a complete overview

Notations (Task Design Space)

Example: undirected search for a trend among all available temperature attribute values

(exploration, navigation(search), high-level(trend), attribute(temperature), all)

Notations (Task Design Space)

Example: undirected search for a trend among all available temperature attribute values

(exploration, navigation(search), high-level(trend), attribute(temperature), all)

Notations (Task Design Space)

Example: undirected search for a trend among all available temperature attribute values

(exploration, navigation(search), high-level(trend), attribute(temperature), all)

Notations (Task Design Space)

Example: undirected search for a trend among all available temperature attribute values

(exploration, navigation(search), high-level(trend), attribute(temperature), all)

Notations (Task Design Space)

Example: undirected search for a trend among all available temperature attribute values

(exploration, navigation(search), high-level(trend), attribute(temperature), all)

Notations (Task Design Space)

Example: undirected search for a trend among all available temperature attribute values

(exploration, navigation(search), high-level(trend), attribute(temperature), all)

Notations (Task Design Space) – Domain-Specific Examples

	<task name="find model input/output relations"></task>	
	<goal v0="exploratory analysis" v1="confirmatory analysis"></goal>	
	<heans v0="relate" v1="search" v2="enrich"></heans>	
task	<pre><characteristics v0="trends" v1="correlations"></characteristics> <target v0="statistications"></target></pre>	
compare variable distribution	<pre><farst v0="attributes(input)" v1="attributes(output)"></farst> </pre>	(hute) attrib(attribute) all)
	<cardinality vo="all"></cardinality>	
find model input/output relation		ns, attrib(*input) attrib(*output), all)
gain overview of whole datas	TACK pape	
analyze trends	<task distributions="" name="compare" variable=""></task>	
visual (climate) model validat	<pre><goal analysis="" v0="confirmatory"></goal> <means v0="search" v1="compare" v2="navigate"></means></pre>) attrib(*time) struct(*), all)
visual data cleansing / find da	<characteristics v0="distributions"></characteristics>), all)
analyze periodicities	<target v0="attributes(1)" v1="attributes(2)"></target>	ıll)
analyze outliers	<cardinality v0="all"></cardinality>	
compare measurements with) attrib(*simulation)
	<task name="analyze trends"></task>	
present data for general audie	<goal v0="confirmatory analysis" v1="exploratory analysis"></goal>	*), multiple)
	<heans v0="*"></heans>	
	<characteristics v0="trends"></characteristics>	
	<target v0="attributes(*)" v1="attributes(time)"></target>	
	<cardinality v0="all"></cardinality>	[Schulz et al. 2013]

X	 SimEnv Visualization - Versio 	n 1.00	⊘ ⊗ ⊙	8			
Tas	Task Specification (4/5)						
	Select task Compare variable distributions						
	The selected task means that you are planning a confirmatory analysis. The Image: Confirmatory analysis is a confirmatory analysis is a confirmatory analysis is a confirmatory analysis. The visualization should support the following means / interaction(s): compare, navigate Image: Confirmatory analysis is a confirmatory analysis is a confirmatory analysis. The and search. The visualization should help to visualize the following data characteristics / Image: Confirmatory analysis is a confirmatory analysis is a confirmatory analysis. The						
	feature(s): distributions . Furthermore, the technique	🔀 🕑		Define task details		$\otimes \odot \otimes \otimes$	
	(analysis target). Finally, the technique should work o <u>Analysis general goals</u> confirmatory analysis: analyze data for hypothesis testing <u>Analysis means</u> compare: compare two or more aspects, navigate: navigate through the data,	Goal confirmatory anal exploratory analy presentation	Means compare e nrich e xtract filter navigate	Characteristics clusters correlations directions discrepancies distributions	Target attributes object / record structure	Cardinality all multiple one two	
	search: search for a specific aspect of your data Analysis characteristics (features) distributions: find distributions Analysis target attributes: attributes / variables of the dataset (both dependent)	Select / Hide	query relate search	frequencies outliers trends ecific tasks	Data-specific tasks		
	Analysis cardinality all: relate to all targets	Stored tasks Compare variable distributions Add Apply Delete Rename					
		<u>O</u> K	Cancel	Store	e tasks	<u>H</u> elp	

X	\odot	🕤 SimEnv Visualization - Version 1.00 🕐 📀 🔕				
Technique Pametrization (5/5)						
		Variation name		Suitability	Contribution	
	1		Discrete pure color	0.48	+ characteristics(outliers) + cardinality(all) + target(attributes) + goal(exploratory analysis)	
	2	e.	Pure color	0.40	+ cardinality(all) + target(attributes) + goal(exploratory analysis) - characteristics(outliers)	
	3		Colored discrete height field	0.25	+ cardinality(all) + target(attributes) + means(search) + characteristics(outliers)	
	4		Colored height field	0.14	+ cardinality(all) + target(attributes) + means(search) + goal(exploratory analysis)	
	5	1	Color bands	0.03	+ cardinality(all) + target(attributes) + goal(exploratory analysis) - characteristics(outliers)	
	6		Pure isolines	0.03	+ cardinality(all) + target(attributes) + goal(exploratory analysis) - characteristics(outliers)	
-Technique Parameterization						
Discrete color mode - The values of a certain parameter are mapped to colors on a 2D plane without interpolation.						
Help Options < <u>B</u> ack Visualize						

[Schulz et al. 2013]

FEEDBACK

Notations (UAN – User Action Notation)

ACTION

~	move cursor	!	highlight object
Xv	depress button "X"	-!	dehighlight object
Χ^	release button "X"	!-!	blink object
Xv^	click button "X"	(!-!) ⁿ	blink object n times
()	grouping of actions	X > ~	object follows cursor
*	performed 0 or more times	@x,y	at point x,y
+	performed 1 or more times	display(X)	show object X
{ }	enclosed action is optional	erase(X)	hide object X
¥	for all	outline(X)	outline object X

And some more...

Notations (UAN – User Action Notation)

TASK: move a file icon					
USER ACTIONS	INTERFACE FEEDBACK	INTERFACE STATE	COMPUTATION		
~[file icon] Mv	file_icon-!: file_icon! ¥file_icon'!: file_icon'-!	selected = file			
~[x,y]* ~[x',y']	outline(file_icon) > ~				
M^	<pre>@x',y' display(file_icon)</pre>		<pre>location(file_icon) = x',y'</pre>		

adapted from [Hartson et al. 1990]

We can use these diagrams (and notations) on all levels of granularity!

Example 1: An Extended Infovis Pipeline

Source: [Jansen + Dragicevic 2013]

Example 1: An Extended Infovis Pipeline

Example 2: Multilevel Interaction Model

Source: [Ren et al. 2013]

History Management

Interaction History

"Keep a history of actions to support undo, replay, and progressive refinement."

-- Ben Shneiderman 1996

Three aspects:

- 1. Recording history (*logging*)
- 2. Utilizing the current history (*undo/redo*)
- **3**. Utilizing a collection of histories (*guidance*)

History Management: 1. Recording Interaction History

Approaches differ in:

- What is captured (actions vs. states)
 -> states easier to log, actions allow more diverse use
- How the information is aligned (linear vs. branching time)
- Which and how many levels of detail are captured (low vs. mid vs. high)
 -> highly problematic to discern when one action ends and the next begins
 -> use of taxonomy/ontology can help to define actions more clearly
- Scope (local vs. global)

 -> from system-wide logging (e.g., Glass box by Cowley et al.)
 to object-specific logging (e.g., per spreadsheet or per cell)

adapted from Heer et al. 2008

History Management: 2. Utilizing the Current History

Operations on the history:

- **Reflect:** passively show the history as it evolves alongside the visualization
- **Replay:** recap the history for presentation/validation purposes
- **Retrace:** undo/redo an action or reestablish a prior state
- **Reuse:** reapply a sequence of actions like a makro
- **Reconfigure:** selective undo/redo, reordering, refining, reparametrization
- **Report:** annotate, share

History Management

Example for History Management

History Management: 3. Utilizing a Collection of Histories

Analyze/mine past histories to provide guidance:

- Guidance context: prior knowledge of the user
 -> nothing, goal (desired final state), path (activity sequence), full
- Guidance domain: the matter on which guidance shall be provided
 -> data, views, infrastructure, users
- Guidance target: how the aim or goal of the guidance is declared
 -> direct (directed search), indirect (query by example), inverse indirect (discover the unexpected)
- Guidance degree: how much freedom to deviate is still allowed
 -> orienteering -> steering -> storytelling -> animated animation

taken from Schulz et al. 2014

History Management

Example for Guidance:

Interruption Management concurrent Who interrupts whom? collaborator interrupts user task interrupts comp. ta user interrupts computational task computational task interrupts user

Mixed-Initiative Interaction: Who Starts/Leads the Communication?

Mixed-Initiative Interaction: Who Starts/Leads the Communication?

MS Access 2003 Charting Wizard

Interruption Management

Possible Interruption Responses

Oblivious dismissal -> interruption goes unnoticed

Unintentional dismissal > interruption is noticed, but its significance w.r.t. the current task not evaluated/understood

Intentional dismissal -> interruption is deemed less important than the ongoing task -> interruption queued for later, ongoing task resumed

Preemptive integration

-> interruption is deemed more important than the ongoing task
 -> remainder of ongoing task is queued, start work on interruption

- Intentional integration
 - -> interruption and ongoing task are subsequently worked on together

Interruption Management

Common Interruption Management Strategies

Immediate interruption

 -> e.g., error messages (BSOD, Browser 404,...)

Negotiated interruption

 > modeled after human-human interruption strategies:
 alert to interruption, but let the user accept, decline, or ignore it

Mediated interruption > aims to predict the user's interruptability (e.g., by determining the current cognitive load of the screen content) and time interruptions accordingly

Scheduled interruption

 > the user specifies in advance which interruptions are permitted
 — e.g., for the next 2 hours only interruptions that can be handled
 within 1 minute are allowed

Software Engineer's Perspective

PATTERNS FOR INTERACTIVE SOFTWARE

Vis Tutorial: Opening the Black Box of Interaction in Visualization – H.-J. Schulz, T. v. Landesberger, D. Baur

notifies

updates

VIEW

VIEW

CONTROLLER

Writes

notifies

MODEL

fills

Patterns for Interactive Software

• Functional: Decoupling into Model-View-Controller

Logical: Decoupling into Data-Context-Interaction

• Technical: Decoupling into Threads

The Model-View-Controller Pattern

- invented by Trygve Reenskaug in 1978/79 at Xerox PARC
- de-facto standard for implementing UIs

 decoupling allows, for example, for syncing multiple views via a single model

The Data-Context-Interaction Pattern

- invented by Trygve Reenskaug around 2006
- helps mainly to untangle the model into
 - **Data:** the pure data with base functionality
 - **Context:** the processes/workflows in which the data is used
 - Interaction: the roles the data plays in the processes
 -> same data can assume different roles
 -> for each, role-specific functionality is added to the data
- decouples data from behavior (roles)
 -> data objects can play many roles over their lifetime
 -> while roles persist only for the duration of the process

Discrete interaction = click, key stroke, etc.

Continuous interaction = drag slider/layout back and forth -> must be sped-up to be interactive (10-20 frames/sec)

Bottleneck @ Retrieval/Computing: precompute affected pixels/objects for each pixel of a slider [Tanin et al. 1996]

Bottleneck @ Networking/Rendering: progressive output with constant refinement – e.g., progressive vis. [Stolper et al. 2014], per-iteration vis. [Choo et al. 2014], online vis. [Angelini et al. 2014]

For both: limit distance the user is allowed to travel per time interval w.r.t. available hardware [Chan et al. 2008]

Step 1: One Thread per View

- Separate Application thread and Visualization thread(s)
- Each View gets its own
 Visualization thread
- Visualization thread progressively refines the view until finished or cancelled
- Use Early Thread Termination

Step 2: Multiple Threads per View by Layering

Common Layering Mechanisms (from Piringer et al.):

Semantic layers: background (map, grid,...), coordinate axes, data items, labels,...

-> sort by decreasing relevance or increasing effort

Incremental layers: sampled data items – e.g., every 100th, every 10th, and finally every item

Level-of-Detail layers: on data level – clusters, subclusters,... on image level – first without anti-aliasing at low resolution, then with anti-aliasing at high resolution -> here: layers get replaced, not blended onto drawn ones

Step 2: Multiple Threads per View by Layering

Layered Visualizations allow for reuse of already drawn elements

Picture source: [Piringer et al. 2009]

Interactive Visualization in Action

A short practical interlude:

Christian Tominski, University of Rostock, Germany