Connecting The Dots Showing Relationships in Data and Beyond

Marc Streit¹, Hans-Jörg Schulz², Alexander Lex³

VisWeek Tutorial 2012

- 1. Johannes Kepler University Linz, Austria
- 2. University of Rostock, Germany
- 3. Harvard School of Engineering and Applied Sciences, Cambridge, MA, USA

PART III: WHEN TO LINK?

Speaker: Marc Streit

Heterogeneity of Linking

Clarification

Part III orthogonal to Part I and II

Could be linking on data/view/interaction level

Could be any linking technique

View vs. Visualization

Visualization [Kosara 2008]

Visual representation that

is based on (non-visual) data

produces an image

is readable and recognizable

View

[Card, Mackinlay and Shneiderman 1999]

Physical display space (most often 2D) where a visual structure is rendered

Single Visualization

Showing a single relationship in the data

D3.js Line Chart Example

Composite Visualization Views (CVV)

[Javed and Elmqvist 2012]

Create new visualizations by combining different visualizations

Juxtaposition (Integrated Views)

Overloading

Superimposition

Nesting

LINKING WITHIN A SINGLE VIEW

Composite Vis: Superimposition

Overlay of two or more visual spaces on top of

each other

1:1 spatial linking

Superimposition Example

With several data series

D3.js Interactive Line Graph Example

Base Representation with Supplemented Links

Superimposition

Example: Graphical Overlays

[Kong and Agrawala 2012]

More examples: http://vis.berkeley.edu/papers/grover

Visual Comparison Inspired by Natural Behavior

FoldableVis [Tominski et al. 2012]

Composite Vis: Overloading

One visualization rendered inside another visualization

Host / client visualization

Same spatial mapping

No 1:1 spatial linkling

Overloading

Overloading Examples

Treemap Overlay [Fekete et al. 2003]

HEB [Holten et al. 2006]

[Collins et al. 2009]

LINKING ACROSS MULTIPLE VIEWS

Composite Vis: Juxtaposition

Show visualizations in a side-by-side fashion Very prominent paradigm

Manual Comparison

Cognitive work

Multiple Coordinated Views

Actions in one view can be related to other view

Premise: View and interact with data through different representations

Coordination on diff. levels

[Colins and Carpendale 2007]

LinkWinds [Jacobson et al. 1994]

Linking & Brushing

Linking: Coordination between views

Brushing: Select groups of data points

Geometric functions such as:

Rectangles, angles, free-form, lassos, etc.

Can be composite (AND, OR)

Can be continuous (smooth brush)

[Doleisch et al. 2004]

[Hauser et al. 2002]

VisWeek Tutorial: Connecting the Dots – M. Streit, H.-J. Schulz, A. Lex

Coordination on Different Levels

Most Common Types

Brushing

Navigational slaving (transformation, rotation)

Instead: coordinate on all levels of Vis Pipeline

VisWeek Tutorial: Connecting the Dots – M. Streit, H.-J. Schulz, A. Lex

[Boukhelifa et al. 2003]

MCV Type 1

Different visualization techniques showing the same data

SimVis [Doleisch 2004]

Juxtaposition

MCV Type 2: Small Multiples

Same visualization technique showing different data

[Tufte 1993]

Cerebral [Barsky et al. 2008]

Rolling the Dice [Elmqvist et al. 2008]

Guidelines for Using MCV

Rules on how to use multiple views

→ see [Baldonado et al. 2000]

Cost-Benefit Tradeoffs

Cognitive aspect

The time and effort required to learn the system

The load on the user's working memory

The effort required for comparison

The effort required for context switching

System aspect

Computational requirements

Display space requirements

Composite Vis: Integrated Views

Visual composition is the same as for juxtaposition

Adds explicit visual links

Semantic Substrates

[Shneiderman and Aris, 2006]

Graph results in a too complex visualization to interpret

User-defined semantic subsets

Visual links connecting identical items across visualizations

Single visualization Single relationship

VisLink

[Collins and Carpendale 2007]

Multiple relationships / datasets

Multiple visualizations

Inter-plane edges

VisWeek Tutorial: Connecting the Dots – M. Streit, H.-J. Schulz, A. Lex

Connected Charts

Connected Charts

[Viau and McGuffin 2012]

[Risch et al. 1996]

Microsoft patent [Höllerer et al. 2007]

Further Integrated View Examples

Interconnected Pathways [Streit et al. 2007]

Combined Vis: Nesting

Client visualizations nested **inside** host

visualization

1 2 3 4 5 6 7 8

Single or multi view?

Depends on perspective

Nesting

Example 1: Nodetrix

[Henry et al. 2007]

Single or composite visualization?

Nesting

Example 2: VisBricks

[Lex et al. 2011]

Single or composite visualization?

Example 3: Jigsaw List View

[Stasko et al. 2008]

Single or composite visualization?

LINKING ACROSS APPLICATIONS

Domain specific specializations:

Banking, Consumer
Packaged Goods,
Education, Game
Design, Government,
Healthcare, Insurance,
Manufacturing, Oil
And Gas, Real Estate,
Retail, Securities And
Investments,
Communications

Jigsaw [Stasko et al. 2007]

[Partl et al. 2012]

Caleydo

[Streit et al. 2012]

[Lex et al. 2012]

Super Application?

Super Application that can visualize everything

Not Feasible! Solution: use existing applications

Downsides:

not integrated no highlighting, linking, etc.

Can we solve this?

Juxtaposition

Snap-Together Visualizations

[North and Shneiderman 2000]

Linking & brushing across multiple applications

Manuela Waldner

[Waldner, GI 2010] – best paper award

VISUAL LINKING
ACROSS APPLICATIONS

ACROSS APPLICATIONS

TO STATE OF THE PROPERTY OF THE PROPE

VisWeek Tutorial: Connecting the Dots - M. Streit, H.-J. Schulz, A. Lex

Visual Links Across Applications

Triggering Selections

Determined by individual application

Canada find

University of Ottawa Ottawa, Ontario, Canada May 31st to June 2nd

e with the collaboration among three leading re 2010, and Computer and Robot Vision 2010),

Visual Links Across Applications

Visual Links Across Applications

Selection Mapping

Applications evaluate incoming selection ID

May 31st to June 2nd

with the collaboration among three leading research conferences (Artificial 2010, and Computer and Robot Vision 2010), will bring together hundreds of research leaders and Canada's most accomplished students to showcase Canada's n intelligent systems and advanced information and communications technology.

Visual Links Across Applications

Visual Links Across Applications

Selection regions are collected and sent to renderer

Design of Visual Links Across Apps

Design of Visual Links

Design of Visual Links

Application Integration

Application support

Direct support

Software extensions (plug-ins)

Mashup application

OCR

Direct Application Support

Extending Caleydo visualization framework

Internal highlighting → coordinates are sent to manager

Software Extension

Mozilla Firefox web browser add-on

Access to DOM of HTML-document

Temporarily enclosing selection ID with -tag

VisWeek Tutorial: Connecting the Dots – M. Streit, H.-J. Schulz, A. Lex

Mashup Application

HTML-page utilizing JavaScript

and Google Maps API

Geographic location associated with selection ID

Reports bounding rectangle around screen coordinates

Usage Scenario: Biomedical Analysis

Usage Scenario: Economic Statistics

Soon Available: Routed Visual Links Across Apps

Light-weight app that renders on top of desktop Real-time, OS-independent

What's missing: Linking beyond Strings

Data

Abstractions

Selections

Intermediate processing results

Meta-data

Groups (clusters)

Interaction

→ As discussed in Part I

Domain specific coordination project for systems biology

Broad Institute

http://www.genomespace.org

Allows to move data(sets) smoothly between applications

Domain specific coordination project for systems biology

Institute of Systems Biology

http://gaggle.systemsbiology.net/

Also integrates analytical tools such as R

Allows to exchange:

Name list

Clusters/groups

Tuple: a collection of name/value pairs

Matrix (rows and columns)

Network: a collection of nodes and edges

Firefox toolbar for the Gaggle

2. Select target application

Obvious

[Fekete et al. 2011]

Meta-Toolkit to Encapsulate Information Visualization Toolkits

http://code.google.com/p/obvious

Deep integration between frameworks

Unifies Prefuse, the InfoVis Toolkit, partly Improvise, JUNG and other data management libraries

LINKING ACROSS DISPLAYS / USERS

Separation

Individual information extraction

Discussion of individual contributions

VisWeek Tutorial: Connecting the Dots – M. Streit, H.-J. Schulz, A. Lex

Collaborative Visual Analysis

Interdisciplinary analysis problems

Single domain expert may not be enough

→ Need for collaboration

[Streit et al. 2009]

[Waldner et al. 2009]

Collaborative Brushing and Linking

[Isenberg and Fisher 2009]

Co-located Visual Analytics of Document Collections

LARK: Coordinating Co-located Collaboration with InfoVis

[Tobiasz et al. 2009]

MCV on large multi-touch displays

Explicitly indicating coordination points on

data, representation, presentation, and view level

[Waldner et al. 2011]

COLLABORATIVE INFO LINKING

Collaborative Info-Linking Approach

Collaborative environment that provides:

Unmodified single-user application support

Sufficient screen space

Multi-pointer support

User-specific visual links across applications

Protecting workspaces

Storing and sharing

Large displays

Casually aligned multi-projector displays

Compiz extension for tiled displays [Waldner et al., EDT/IPT 2008]

Warping and blending of overlapping projections in the window manager \rightarrow application transparent

Linking Infrastructure

Collaborative Information Linking

Window Protection

Selection "Hijacking"

Selection Storage and Management

Bookmark list as central storage and global

One-Shot Linking

Light-weight linking *from* unmodified applications

Text selection → keyboard shortcut → selection buffer

VisWeek Tutorial: Connecting the Dots – M. Streit, H.-J. Schulz, A. Lex

Observational Experiment

18 participants (16 males, 2 females) - pairs Analysis of migration from Africa to Europe Observations, video / audio recording, questionnaires, interview

Results

Usage of information linking depends on work style
Individual information retrieval → links to locate info
Joint discussion → one set of links only
Mixed-focus collaboration: most frequently

Results

Distractions and conflicts

- In general distraction was assessed as low
- Input conflicts on shared windows, changes to window layout
- Could be resolved by social protocols, but subjectively annoying

Territoriality

Window ownership based on initial window layout

Movement of shared windows rare

Open Issues

What about visual clutter when more users are interacting? How to handle discontinuous multi-display/projector setups?

Virtual Reality

Visual links in immersive environments

Biological Network Analysis in VR [Dickerson et al 2002]

Connecting the Dots

TUTORIAL SUMMARY

Summary Part I – What to Link

Relations differ in their:

Cardinality

Elements (Granularity + Scope)

Domain

Relations can be derived or inherent

Examples given show what's already been done

– and what's still left to explore!

Summary Part II – How to Link

Summary Part III – When to Link

Connecting The Dots

Showing Relationships in Data and Beyond

connecting-the-dots.caleydo.org

Marc Streit
Hans-Jörg Schulz
Alexander Lex

marc.streit@jku.at contact@hjschulz.net alex@seas.harvard.edu

