
Aesthetics and Ordering in Stacked Area Charts
Supplementary Material: Algorithmic Details

Steffen Strunge Mathiesen and Hans-Jörg Schulz
Aarhus University, Denmark

1 The iterative optimisation procedure UpwardsOpt

The fundamental idea of UpwardsOpt, as stated at the very beginning of Sec. 4.1 in the paper, is to iteratively
perform the following steps for all layers of a predefined stack of layers:

1. Each layer i is first removed from the stack.

2. The function FindBestPosition then computes layer i’s optimal position in the remaining stack.

3. Layer i is then reinserted at that newfound position.

This 3-step procedure is shown in lines 13-15 in Algorithm 1 below, which takes as inputs an initial stack of
layers init and a minimum improvement threshold minImpr.

The remainder of the algorithm is for bookkeeping, so that we do not visit layers more than once despite
them being shuffled around. This bookkeeping builds on the observation that moving a layer i to position
newIdx only affects the layers between (and including) positions i and newIdx (lines 18 and 21). If the
layer i was moved upwards (line 18), all layers between i and newIdx which are already in the list of done
layers get their index decremented by 1, as i has pushed them down one layer (line 19). Yet if the layer i was
moved downwards, all layers between newIdx and i which are already in the list of done layers get their index

Algorithm 1 UpwardsOpt

1: procedure UPWARDSOPT(init,minImpr)
2: order ← init
3: repeat
4: oldCost← costchart(order)
5: i← 0
6: done← []
7: while i < length(order) do
8: if i ∈ done then
9: i ++

10: continue . goes back to line 7
11: end if
12:

13: fi ← pop(order, i)
14: newIdx← FindBestPosition(order, fi)
15: insert(order, newIdx, fi)
16:

17: for d = 0 to length(done)− 1 do
18: if (newIdx > i) && (done[d] ∈ [i . . . newIdx]) then
19: done[d] - - . layer i moved up
20: end if
21: if (newIdx < i) && (done[d] ∈ [newIdx . . . i]) then
22: done[d] + + . layer i moved down
23: end if
24: end for
25: done.add(newIdx)
26: end while
27: until costchart(order) ≥ oldCost · (100%−minImpr)
28: end procedure

1



incremented by 1, as i has pushed them up one layer (line 22). If the layer was not moved at all, nothing
happens. After considering all layers (while loop in lines 7 through 26), we compare if the overall cost of
the new ordering is better than it was before. As long as the cost improves by at least minImpr percent per
iteration, we repeat the above procedure (repeat loop in lines 3 through 27). This overall approach guarantees
that no improvement ≥ minImpr can be made by moving any individual layer to another position.

2 Finding optimal layer positions with FindBestPosition

Finding the best position to reinsert a layer into the stack is done by the FindBestPosition algorithm stated
in Sec. 4.2 of the paper. This algorithm consists of two stages: a preprocessing stage of certain layer costs
and the actual testing stage using the preprocessed costs to determine layer i’s best position in the given
stack.

During the preprocessing stage, the following three costs are computed for our layer i and the remaining
stack with layer i removed:

• costBelow stores an array of costs for all layers, if a layer lies below layer i in the stack. This means at
index pos, costBelow[pos] contains the cost of layer pos sitting on the stack of layers 0 through pos− 1,
excluding layer i. This is shown schematically in Fig. 1b with the red layer i is removed from its original
position in Fig. 1a and being placed at the very top. The array costBelow then captures the cost values
for all layers shown in blue.

• costAbove stores an array of costs for all layers, if a layer lies above layer i. This means at index pos,
costAbove[pos] contains the cost of layer pos sitting on the stack of layers 0 through pos− 1 and layer i.
This is shown schematically in Fig. 1c with the red layer i is removed from its original position in Fig. 1a
and being placed at the bottom of the stack. The array costAbove then captures the cost values for all
layers shown in purple.

• costLayer stores an array of costs for layer i being positioned at position pos. Hence, costLayer[pos]
holds the cost of layer i placed on top of layers 0 . . . pos− 1.

Together, these arrays allow us to specify the cost of a stack with layer i at position pos by summing up
costBelow[0 . . . pos − 1], costLayer[pos], and costAbove[pos . . . n − 2] with n being the numbers of layers
including i. The details are specified in Eqn.10 in the paper.

(a) A stacked area chart with a layer fi
highlighted.

f0

f1

f2

f3

(b) The chart from (a) with fi placed at
the top.

f0

f1

f2

f3

(c) The chart from (a) with fi placed at
the bottom.

f0

f1

f2

f3

(d) The effect of moving fi to a
different position.

f0

f1

f2

f3

(e) Layer fi at position j − 1, about to
be moved to j.

f0

f1

f2

f3

(f) Layer fi at position j, having moved
from j − 1.

Figure 1: The principle idea behind FindBestPosition: The top row shows the preprocessing stage in which
for a layer fi (a) stacks are precomputed under the assumption that the layers are below fi (b) or above (c).
The bottom row shows the testing stage and how we can piece together any stack from the precomputed stacks
(d). In case we only move up the layer fi by one position, we only have to adjust a few layers from one stack
to the next (e+f).

2



During the testing stage, we then try new positions for layer i by moving it upwards in the stack one layer
at a time. By doing so, we can make use of the preprocessed costs to modify the cost value of the previously
tested position, as described in Eqn.11 in the paper. This is also illustrated in the transition from Fig. 1e to
Fig. 1f: When moving the red layer i up one layer to position pos, we need to

• add costBelow[pos− 1] (line 19, also shown as the dark blue layer in Fig. 1f)

• subtract costAbove[pos− 1] (line 20, also shown as the dark purple layer in Fig. 1e)

• add costLayer[pos] (line 21, also shown as the red layer in Fig. 1f)

• subtract costLayer[pos− 1] (line 22, also shown as the red layer in Fig. 1e)

3 Discussion of runtime complexities

The time complexities of BestFirst and TwoOpt are already stated in their respective source publications.
However, the implementation used for benchmarking in the paper is a bit different, since it is made for regular
stacked area charts instead of streamgraphs. For BestFirst, the time complexity is O(n2m), where n is the
number of layers and m is the number of time points per layer. The algorithm iteratively adds one layer at a
time to the stack by checking all layers each time for the best one to add. Testing a layer requires a call to the
cost function, which contains a sum over all time points and thus runs in O(m). Adding the n layers in the
correct order by checking O(n) layers each time adds the n2 part. TwoOpt then runs in O(rnm) time, where
r is the number of repeats. As the algorithm runs until it stops improving, it can be difficult to say exactly
how many repeats it needs to complete. The number depends on a number of things, including the number of
layers, as well as the shape and span of the layers. The nm part originates from calculating the cost for each
pair of layers like in BestFirst and doing this for every pair of adjacent layers in the stack.

For UpwardsOpt, all of the layers are considered one by one for the best position. Running through each
layer requires the loop to run O(n) times. For each layer, all positions in the stack are considered, which is done
by a single call to FindBestPosition (see line 14 in Algorithm 1. In FindBestPosition, the three arrays of
length n are initialised, each being filled with results from computing the cost function. The cost function sums
over all time points, resulting in a time complexity of O(m). Doing this n times means that the preprocessing
stage of FindBestPosition runs in O(nm). The testing stage contains a loop running from 0 to n, containing
merely additions and subtractions. Hence the time complexity of the testing stage is O(n), and O(nm) becomes
the dominant part for FindBestPosition. Combining this with the O(n) calls to FindBestPosition gives us
a time complexity of O(n2m) for the inner loop of UpwardsOpt (i.e., the while loop in Algorithm 1). But since
this loop is repeated until it stops improving over minImpr, the time complexity gets an added r number of
repeats, resulting in O(rn2m). Like for TwoOpt, it can be difficult to say exactly how large r is. It is of course
dependent on minImpr, which – as stated in the paper – results in 2 ≤ r ≤ 4 for minImpr = 1%.

3


	1 The iterative optimisation procedure UpwardsOpt
	2 Finding optimal layer positions with FindBestPosition
	3 Discussion of runtime complexities

